direct product, metabelian, soluble, monomial, A-group
Aliases: C10×C22⋊A4, C25⋊4C15, C24⋊6C30, C22⋊(C10×A4), C23⋊3(C5×A4), (C24×C10)⋊2C3, (C22×C10)⋊3A4, (C23×C10)⋊8C6, (C2×C10)⋊2(C2×A4), SmallGroup(480,1209)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C22 — C24 — C23×C10 — C5×C22⋊A4 — C10×C22⋊A4 |
C24 — C10×C22⋊A4 |
Generators and relations for C10×C22⋊A4
G = < a,b,c,d,e,f | a10=b2=c2=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, fcf-1=b, fdf-1=de=ed, fef-1=d >
Subgroups: 896 in 296 conjugacy classes, 32 normal (12 characteristic)
C1, C2, C2, C3, C22, C22, C5, C6, C23, C23, C10, C10, A4, C15, C24, C24, C2×C10, C2×C10, C2×A4, C30, C25, C22×C10, C22×C10, C22⋊A4, C5×A4, C23×C10, C23×C10, C2×C22⋊A4, C10×A4, C24×C10, C5×C22⋊A4, C10×C22⋊A4
Quotients: C1, C2, C3, C5, C6, C10, A4, C15, C2×A4, C30, C22⋊A4, C5×A4, C2×C22⋊A4, C10×A4, C5×C22⋊A4, C10×C22⋊A4
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)
(11 55)(12 56)(13 57)(14 58)(15 59)(16 60)(17 51)(18 52)(19 53)(20 54)(31 47)(32 48)(33 49)(34 50)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)
(1 25)(2 26)(3 27)(4 28)(5 29)(6 30)(7 21)(8 22)(9 23)(10 24)(31 47)(32 48)(33 49)(34 50)(35 41)(36 42)(37 43)(38 44)(39 45)(40 46)
(1 30)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(31 42)(32 43)(33 44)(34 45)(35 46)(36 47)(37 48)(38 49)(39 50)(40 41)
(1 30)(2 21)(3 22)(4 23)(5 24)(6 25)(7 26)(8 27)(9 28)(10 29)(11 60)(12 51)(13 52)(14 53)(15 54)(16 55)(17 56)(18 57)(19 58)(20 59)
(1 59 39)(2 60 40)(3 51 31)(4 52 32)(5 53 33)(6 54 34)(7 55 35)(8 56 36)(9 57 37)(10 58 38)(11 41 21)(12 42 22)(13 43 23)(14 44 24)(15 45 25)(16 46 26)(17 47 27)(18 48 28)(19 49 29)(20 50 30)
G:=sub<Sym(60)| (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,51)(18,52)(19,53)(20,54)(31,47)(32,48)(33,49)(34,50)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,21)(8,22)(9,23)(10,24)(31,47)(32,48)(33,49)(34,50)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46), (1,30)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50)(40,41), (1,30)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,60)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59), (1,59,39)(2,60,40)(3,51,31)(4,52,32)(5,53,33)(6,54,34)(7,55,35)(8,56,36)(9,57,37)(10,58,38)(11,41,21)(12,42,22)(13,43,23)(14,44,24)(15,45,25)(16,46,26)(17,47,27)(18,48,28)(19,49,29)(20,50,30)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60), (11,55)(12,56)(13,57)(14,58)(15,59)(16,60)(17,51)(18,52)(19,53)(20,54)(31,47)(32,48)(33,49)(34,50)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46), (1,25)(2,26)(3,27)(4,28)(5,29)(6,30)(7,21)(8,22)(9,23)(10,24)(31,47)(32,48)(33,49)(34,50)(35,41)(36,42)(37,43)(38,44)(39,45)(40,46), (1,30)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(31,42)(32,43)(33,44)(34,45)(35,46)(36,47)(37,48)(38,49)(39,50)(40,41), (1,30)(2,21)(3,22)(4,23)(5,24)(6,25)(7,26)(8,27)(9,28)(10,29)(11,60)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59), (1,59,39)(2,60,40)(3,51,31)(4,52,32)(5,53,33)(6,54,34)(7,55,35)(8,56,36)(9,57,37)(10,58,38)(11,41,21)(12,42,22)(13,43,23)(14,44,24)(15,45,25)(16,46,26)(17,47,27)(18,48,28)(19,49,29)(20,50,30) );
G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60)], [(11,55),(12,56),(13,57),(14,58),(15,59),(16,60),(17,51),(18,52),(19,53),(20,54),(31,47),(32,48),(33,49),(34,50),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46)], [(1,25),(2,26),(3,27),(4,28),(5,29),(6,30),(7,21),(8,22),(9,23),(10,24),(31,47),(32,48),(33,49),(34,50),(35,41),(36,42),(37,43),(38,44),(39,45),(40,46)], [(1,30),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(31,42),(32,43),(33,44),(34,45),(35,46),(36,47),(37,48),(38,49),(39,50),(40,41)], [(1,30),(2,21),(3,22),(4,23),(5,24),(6,25),(7,26),(8,27),(9,28),(10,29),(11,60),(12,51),(13,52),(14,53),(15,54),(16,55),(17,56),(18,57),(19,58),(20,59)], [(1,59,39),(2,60,40),(3,51,31),(4,52,32),(5,53,33),(6,54,34),(7,55,35),(8,56,36),(9,57,37),(10,58,38),(11,41,21),(12,42,22),(13,43,23),(14,44,24),(15,45,25),(16,46,26),(17,47,27),(18,48,28),(19,49,29),(20,50,30)]])
80 conjugacy classes
class | 1 | 2A | 2B | ··· | 2K | 3A | 3B | 5A | 5B | 5C | 5D | 6A | 6B | 10A | 10B | 10C | 10D | 10E | ··· | 10AR | 15A | ··· | 15H | 30A | ··· | 30H |
order | 1 | 2 | 2 | ··· | 2 | 3 | 3 | 5 | 5 | 5 | 5 | 6 | 6 | 10 | 10 | 10 | 10 | 10 | ··· | 10 | 15 | ··· | 15 | 30 | ··· | 30 |
size | 1 | 1 | 3 | ··· | 3 | 16 | 16 | 1 | 1 | 1 | 1 | 16 | 16 | 1 | 1 | 1 | 1 | 3 | ··· | 3 | 16 | ··· | 16 | 16 | ··· | 16 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 |
type | + | + | + | + | ||||||||
image | C1 | C2 | C3 | C5 | C6 | C10 | C15 | C30 | A4 | C2×A4 | C5×A4 | C10×A4 |
kernel | C10×C22⋊A4 | C5×C22⋊A4 | C24×C10 | C2×C22⋊A4 | C23×C10 | C22⋊A4 | C25 | C24 | C22×C10 | C2×C10 | C23 | C22 |
# reps | 1 | 1 | 2 | 4 | 2 | 4 | 8 | 8 | 5 | 5 | 20 | 20 |
Matrix representation of C10×C22⋊A4 ►in GL6(𝔽31)
27 | 0 | 0 | 0 | 0 | 0 |
0 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 27 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
5 | 30 | 0 | 0 | 0 | 0 |
25 | 0 | 30 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 30 | 0 | 30 |
30 | 0 | 0 | 0 | 0 | 0 |
0 | 30 | 0 | 0 | 0 | 0 |
6 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 30 | 0 |
0 | 0 | 0 | 1 | 1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 30 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 30 | 30 |
5 | 29 | 0 | 0 | 0 | 0 |
0 | 26 | 1 | 0 | 0 | 0 |
0 | 6 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 30 | 30 | 29 |
0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(6,GF(31))| [27,0,0,0,0,0,0,27,0,0,0,0,0,0,27,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,5,25,0,0,0,0,30,0,0,0,0,0,0,30,0,0,0,0,0,0,1,0,30,0,0,0,0,30,0,0,0,0,0,0,30],[30,0,6,0,0,0,0,30,0,0,0,0,0,0,1,0,0,0,0,0,0,30,0,1,0,0,0,0,30,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,0,1,0,0,0,0,30,1,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,30,0,0,0,0,0,0,1,30,0,0,0,0,0,30],[5,0,0,0,0,0,29,26,6,0,0,0,0,1,0,0,0,0,0,0,0,0,30,0,0,0,0,1,30,0,0,0,0,0,29,1] >;
C10×C22⋊A4 in GAP, Magma, Sage, TeX
C_{10}\times C_2^2\rtimes A_4
% in TeX
G:=Group("C10xC2^2:A4");
// GroupNames label
G:=SmallGroup(480,1209);
// by ID
G=gap.SmallGroup(480,1209);
# by ID
G:=PCGroup([7,-2,-3,-5,-2,2,-2,2,850,1586,5052,8833]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^10=b^2=c^2=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,f*c*f^-1=b,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations